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Abstract 

A compact approximate formula is presented for the 
joint distribution p ( E ~ , . . . ,  Era) of m structure fac- 
tors for an equal-atom structure in the space group 
P1. The formula is based on the peculiar behaviour 
at infinity of suitable approximations of the charac- 
teristic function of p ( E 1 , . . . ,  Era). The case 
(El, E2)= (E2h, Eu) is considered for values Ugh, 
Un <-0-45. The conditional probability P÷(E2h Eh) 

that is obtained with the above method is compared 
with the tangent formula of Cochran & Woolfson 
[Acta Cryst. (1955), 8, 1-12]. 

1. Introduction 

Let us consider m normalized structure factors 

N / 2  

Eh~ = 2 N  -1/2 ~, cos (27rhk.Xj) ( k =  1 , 2 , . . . ,  m) 
j=l  

for the space group P1 and a unit cell containing N 
equal atoms. We shall suppose that Xl, x2, • • •, xn 
(n = N / 2 )  are n independent random vectors ranging 
uniformly over the unit cell and we denote by 
p(E1, E 2 , . . . ,  E~) thejoint  probability density of the 
m random variables Ek (=Eh~); we use the notation A 
Eh to denote Eh but considered as a random 
variable. For phase determination we are primarily 
interested in a good approximation of 
exp (½ Ek E2k)p( E~, E2, . . . , Era) rather than 
p(EI, EL,..., Era). It has been indicated by Brosius 
(1987) that a Gram-Charl ier  series expansion of 
p ( E I , E 2 , . . . , E m )  is a poor approximation to 
exp (½ ~,k E2k)p( E~, " " " , E,,,) for moderately high ]E 
values. A way to cope with this problem was 
to develop log p ( E ~ , . . . , E ~ )  according to an 
asymptotic series expansion (e.g. Karle & Hauptman,  
1953). This is believed to work fine for moderately 
high E values and not too high m. A serious annoy- 
ance of the latter method is that it will be practically 
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impossible to calculate the error of truncating 
l o g p ( E 1 , . . . ,  Era) at some order, whereas it should 
in principle be possible to do it for the Gram-Char l ier  
expansion o f p ( E l , . . . ,  Era) [the case m -- 1 is treated 
by Brosius (1988)]. Furthermore, the formal 
expansion of log p ( E ~ , . . . ,  Era) will hide some basic 
forms in it; to be more precise, it has been shown by 
Heinerman, Krabbendam & Kroon (1977) that 
log p ( E I , .  • . ,  Era) contains a Kar le-Hauptman deter- 
minant at least if one considers l o g p ( E ] , . . . ,  Era) to 
order N -~. But if one inspects the terms of order 
(NN1/2)  -l  it is also clear that something else is in 
play, the influence of which might become greater 
for larger m. Another example is given by the well 
known Cochran & Woolfson (1955) formula that 
gives the conditional probability of EEh given the 
value Eh. In their formula the expression ½EEh(E 2 -  
1)N -1/2 appears. Clearly, the part (1 /2NI /2)E2hE 2 
has something to do with the Harker-Kasper  
inequality U2<-½(l+ U2h) (Harker & Kasper, 1948). 
But where the term - (1 /2N~/2)Eeh  comes from 
remains a mystery. 

Recently, the search for the functional form and 
for a better approximation of p(E~, E 2 , . . . ,  Era) has 
regained interest (e.g. Wilson, 1981, 1983, 1986, 1987; 
Shmueli & Weiss, 1985; Shmueli & Wilson, 1981). 
Our approach differs from approaches like that of 
Shmueli, Weiss, Kiefer & Wilson (1984) in that we 
present a modification of the usual asymptotic 
development. 

2. The formula 

p(EI, E2,..., Era) 

=(2"n')-m/2{det[°rO(~l, ~ 2 , - - ' ,  ~m)]} -1/2 

× H exp ( - -Ek~k)Io(2~k/N1/2)  N/2 
k=l 

X p ( ~ I ,  ~ 2 , ' - - ,  ~ m ) N / 2 ~ N (  ~ I ,  . . . , ~?m) 

(~) 1989 International Union of Crystallography 

(1) 



454 THE JOINT DISTRIBUTION p ( E ~ , . . . ,  Era) IN P1 

where x ~ I,,(x) denotes the modified Bessel function 
of order n; a , ( x )  = I , , (x) / Io(x)  for every real x; 

( U l ,  . . . , U m ) - *  ~ , ( U l ,  . . . , U m )  ' ' / ~  

is the characteristic function of the random vector 
,~ A A 

( E 1 , E 2 , . . . , E m ) ;  

I ] I ( U l  , U 2 ,  • • • , Urn) = q~(-iul,  - - i u 2 ,  • • • , -iUm); 

p( ~;1, ~ 2 , . . . ,  g'm) 

= 0 ( $ ' , , . - . ,  ~ ' m ) / f i  Io(2~k/Nl /2);  
I k =  1 

($'~, $ '2 , . . . ,  $',,,) is the solution of the m equations 

Ek~O( ~I,  . . . , g'm) 

N 
- 2 OUa ~ O ( u , , . . . ,  u,,,) (~,, ....... )=(~, ..... ~,,) (2) 

( k =  1 , 2 , . . . ,  m); 

0"u(~l,. . . ,  K,) 

2 N 1 
N E, Ej +-~ O ( ~ l , . . . ,  ~,,,) 

0 2 
x q , ( u , , . . . ,  u, , , ) lo , ,  . . . . . . .  ~=c~, ..... ~,,,~ 

Ou~ Ou~ 

(l<_i, j<_m); 

6N( ~l ,  . . . , ~m) = l + O(1/  N) .  

We usually take 3~(~ '~ , . . . ,  $'N)= 1 for N 
sufficiently large. For the definition of 6~ we refer to 
the derivation of this formula in § 3. 

Some comments should be made here. We expect 
that 61,i may be approximated by 1 for sufficiently 
large N. Also (1) is only valid whenever det (0"u) # 0. 
We think that the set (2) of rn equations always admits 
a solution whenever E l , . . . ,  E,,, are 'acceptable 
values', i.e. whenever there exist n vectors r ~ , . . . ,  r ,  
(n = N / 2 )  such that 

Eh~ = 2 N  -~/2 ~ cos (2"n'hk . rj) for k = 1 , . . . ,  m; 
J 

but this is still an open question. However it is not 
difficult to show that a solution must be unique 
whenever det (0"o) ~ 0. Finally, for the case m -- 1 it 
has been shown (Brosius, 1987) that 

lim det (0"o) -'/2 exp (--Ek~k) 
1 d e t ( c r q ) ~ 0  

x Io(2g'k)/NI/2)N/2]p(~'I, • • • ,  ~m) N/2-'-O 

whenever N >-5. It is not known if anything similar 
is valid for general m. Finally, let us notice that in 
practice we shall usually look for values of 
g'~, ~ 2 , . . . ,  K,, that solve the m equations (2) to a 
good approximation. 

3. The derivation of formula (1) 

Let ~ ( U l , . . . , U m ) = ( e x p ( i u l ~ i + . . . + j U m f f . m ) )  be 
the characteristic function of ( E l , . . . ,  Era), 

q~ (u l , . . . ,  Um)= lim q~(ul , .  • •, Um) 
r---, o o  

where q ~ ( u l , . . . ,  Urn) is a suitable approximation of 
• ( u l , . . . ,  urn) defined as 

C b r ( U , , . . . ,  U m )  

Since 

={(s01 [J°(2uJ N1/2) 

+2k=l~ i k jk (2uJ  Nl/2) c°s (27rkh~ " x ) ] ) }  N/2 

1 1 J , , ( z )=(2 /  Trz)l/2{cos (z-~nTr ~Tr) 

+exp ( Im z )O([z -')} 

for z -->oo ( a r g z  <~r), 

it follows from a slight generalization of the method 
given by Brosius (1987) that the Fourier transform 
p r ( E l , . . . ,  E,,,) of qbr(u l , . . . ,  Urn) is also given by 

+ O O  --FOO 

p r ( E , , . . . , E m ) = ( 1 / 2 ~ )  m ~ du , . . ,  f Our, 
- o o  - o o  

X exp [ - i  E (-i~k'JI- uk)Ek 

x ~ ( - i ~ 1 - t -  u l , . . . ,  - i ~ m +  Urn) 

(3a) 

for all real values of ~ l , . . . ,  ~,,,. If we assume that 
the joint ,  density distribution p ( E ~ , . . . ,  Er,,) of 
( f - .1 , . . . ,  Era) exists, we clearly have 

p ( E ~ , . . . ,  E , , )=  lim p ~ ( E l , . . . ,  Era). 
r--~ ¢x3 

So (3a) becomes 
-4-00 - b o o  

p ( ~ l , . . . , E m ) = ( 1 / 2 ~ )  m ~ d , , , . . .  ~ d~m 
- o o  - c o  

x exp [ - i  Y. (--i~k + uk)Ek] 

x ~(- i~gl  + U l , . . . ,  - iK , ,  + Urn) 

(3b) 

for all real values of ~1, ~ 2 , . . . ,  ~'m. One then gets 

p ( E , , . . . ,  E,,,) 

=exp  ( - - ~  E k ~ k ) q b ( - - i ~ , , . . . ,  --i~m) 

x ( 1 / 2 ~ )  m J d u , . . .  J dumexp - i Z u k G  
- c o  - o o  k 

x ~ ( u , , . . . ,  Urn) (4) 
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where 

~ ( - i ~ l  + Ul, . . . , --i~m + urn) eb~(ul,..., u~)- (5) 
• ( - i ~ , . . . ,  -i~m) 

is a characteristic function. More precisely one has 

t / ) ~ ( U l , . . .  , U r n ) = ~ 0 ~ ( U l , . . . ,  Urn) n ( n  = N / 2 )  (6) 

where q~(u~ , . . . ,  Urn) is a characteristic function. 
Hence, for large n, q ~ ( u x , . . . ,  urn)" can be developed 
asymptotically as 

~ ( u l , . . . ,  urn)" 

= exp [ i  ~k /Zk(~' l , . . . ,  ~J~m)Uk 
-i 

O ' i j ( ~ l , . . .  , ~m)Uiuj+O(1/Nl/2)l  (7) 
i j i 

where 

/ ~ k ( ~ l ,  , , ,  , ~ m )  

1 
- In q ) ( - i ~ l  + U l , . . . ,  --i~m 

i c~u k 

+ U.,) .t=.2 . . . . .  .,,,=o 

0 - 0 ( ~ , " - ,  ~'m) 
02 

- - -  In q ) ( - i ~ l + u l , . . . , - i ~ g , ,  
Ou~ Ouj 

+Urn) ,  . . . . . . .  =o. (8) 

One then obtains 
4-oo -k-o~ 

(1/27r)" ~ d u , . . .  ~ dum 
-co -oo 

+co --t-oo 

=(1/2,~) m I d u l . . .  I dum 

(9) 
with 

e~ = 1 + O(1/N1/2). 

Now choose ~l,  • • •, *,,, such that ]Ek -- IZkl is as small 
as possible. So, if we suppose that there exist values 
~ l , . . . ,  ~,, such that Ek = tZk for every k then the 
part on the right of (9) becomes 

(1/27r)m/26m[det(0-e)] -1/2 [ i fde t (0 -o)#0  ] (10) 

where 6N = 1 + O(1 /N) .  In general we hope that 6~ 
can be approximated by 1 when N is large enough 
even when det (0-0) is small (but positive). The term 
61,1 has been partially analysed (Brosius, 1987). It is 
now straightforward to obtain the final form of (1). 

4. An application: the case ( E l ,  E 2 ) =  (E2h, Eh) 

For convenience, let us put 

/3 = 2 N  -1/2. (11) 

One then obtains, using (A4) of the Appendix, 

~O(Ul , U 2 ) =  J o ( 3 u l ) J o ( 3 U 2 )  

-2iJ1(/3u~)J2(/3u2) + O( 1 / N  3) 
and thus 

~,(~1, ~2) = to(/3~1)Io(/3~2) 

+ 211(/3~'1)I2(/3~'2)+ 0 ( 1 /  N 3) (12) 

p ( ~ ,  ~2)= 1+2o, l(/3~'~)a2(/3~'2)+O(1/N3). (13) 

For U k = E k N  -1/2 and using (A1), equations (2) 
become 

+ higher-order terms 

U2p(~I, ~2) = ~1(/3~2) + al(/3~l)a,(/3~2) 

+ ~1(/3~,)~(/3~2) 

+higher-order terms. (14) 

Inspection of the tables of t , ( x )  shows that a good 
approximation to the solution of (14) within the range 
I u,  I, I u21-~ 0.45 is given by 

UI ~ al(/3~gl) and U2 "~" o '1( /3~2) .  

We may then approximate 42(/3~1), a3(fl~fl), etc. by 
½UL1 3 gUl, etc. and analogous approximations may be 
given for an(/3~2). It then follows that 

p ( ~ I , ~ 2 ) = I + U I U ~ + O ( 1 / N 3 ) ,  (15) 

and after using (A2) 

0-11(~1, ~ l ) ' l - -~U13 2 

0-22(~1, ~2) --- U2 

0-'22( ~1 ~2)  = 1 + U 1 3 2 , - ~ U 2 .  (16) 
Hence 

det [0-u(~1, ~2)]'-" 1 + Ul-3U~-~U~.  (17) 

Since for this approximation sign (~k)=s ign  (Ek) 
( k = l , 2 )  we only need to consider the part 
P( ~t,  ~2)m21 det [°'is( ~1, ~2)]1-1/2, 

P(~ l ,  ~2)m2{ det [0-0(~1, ~2)]} -1/2 

(I + UIU2) N/2 
- [ 1  + Ul-~U~-~UZ~] 1/2 (18) 

of Is(El, E2) [see (1)] in order to derive the condi- 
tional probability P+(E2hlIEhJ) that the sign of E2h is 
positive given the magnitude of Eh. Define 

a+(El, E2) = 1 +lull-~u~,-~u~ 
(19) 

a_(e , ,  ~2) = 1 - I u , l - ~ t q - ~ u L  
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Then one obtains 

P÷(E2 IIEhl) 

{ [a+(e,, 
: 1 + La_-~  ~2) J 

exp(-IUiIE~)} -l. (20) 

Let us compare this with the classical tangent formula 
(Cochran & Woolfson, 1955) for E 2--- 1. It then fol- 
lows from (20) that (if N is high enough) 

APPENDIX 
Some useful relations 

d 
- -  In(X)=½In_I(X)+½I,+I(X). (A1) 
dx 

d E 
dx 2 l,,(x)=~I,,_2(x)+½l,,(x)+~l,,+2(x). (A2) 

J~(/x)= i"I,,(x); J _ , , ( x ) = ( - 1 ) " L ( x ) ;  

l_ , , (x )=(-1)" l , , (x ) .  (a3)  

exp (iz cos q~)=Jo(z)+2 ~ ikJk(Z) COS (kq~). (a4)  
k=l 

This gives P+=0.41 for Ul]=0"3 whereas the 
classical formula would have given P+ = 0.5. 

5. Concluding remarks 

Besides the problem of proving that the m equations 
(2) always give a solution for acceptable values of 
E l , . . . ,  Em it also remains to investigate the term 6N. 
We believe that 6N can be approximated very well 
by 1 (and some heuristic arguments point to that 
direction), but a lot of research has still to be done. 
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Abstract 

A new direct method (called T R Y M I N )  for phase- 
problem solution is described. At first a methodical 
procedure is presented for the construction of a direct 
method. The aim of the calculation is formulated as 
a consistency between theoretical and calculated 
distributions of invariants. A minimized function is 
obtained and an algorithm for its minimization is 
proposed. The algorithm is based on the partial 
decomposition of phases into three subsets and on 
the cyclical improvement of the estimate of local 
minima. The efficiency of the method has been tested 
on 23 structures and a short evaluation of the results 
of computer experiments with test structures is pre- 
sented. 
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Definition of the problem 

The direct method for the solution of the phase prob- 
lem is based on a theory that gives for a great number 
of functions Y, of phases ~ a forecast of their values 
for the correct phases ~*. For arbitrary values l~, u~ 
the theory affords the probability that the theoretically 
correct value Y* = Yi(~0*) satisfies 

l, < Y* < u,. 

Implementing this theory we can formulate the 
following task: to construct an algorithm for the gen- 
eration of a limited number of sets q3 for which the 
values 17"~ = Y~(~) will satisfy inequalities l; < ~'~ < u~ 
(for a priori given l~, u~) with frequency in correspon- 
dence with the theory. 
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